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The present study examines the problem of horizontally uniform inertial oscillations in 
a homogeneous, horizontally unbounded rotating fluid. The analytical solution indicates 
that these oscillations are damped in time due to viscosity. Numerical calculations using 
the DuFort-Frankel finite diierence scheme indicate that amplifying numerical solutions 
can exist when high frequency inertial oscillations are present. These positive growth rates 
are associated with the finite difference second time derivative Which is a part of this scheme. 
The amplifying solutions can be eliminated by using a sufficiently small time step At. 
The existence of such solutions was encountered in a study of three-dimensional Benard 
convection in a rotating fluid. The numerical results and primary conclusions of that study 
are summarized. 

1. INTRODUCTION 

In numerical calculations there are several methods of taking the finite difference 
forms of the viscous and diffusive terms in the hydrodynamical equations of motion. 
One of these methods is the DuFort-Frankel difference scheme, which is usually 
analyzed with respect to the heat equation (see [4, 51). For this case the DuFort- 
Frankel scheme is stable for any value of the time step dt, although the accuracy 
decreases for large LI t. In the present study a problem is considered for which high 
frequency intertial oscillations can exist. The analytical solution indicates that these 
oscillations are damped in time. It is shown, however, that using the DuFort-Frankel 
scheme amplifying numerical solutions can develop. Although no proof is given, the 
present investigator considers it likely that similar amplifying modes can exist for 
other types of high frequency oscillations as well. 

In Section 2, a simplified dynamical problem involving the motion in a homogeneous 
rotating fluid is formulated. The fluid is confined between two planes in the vertical 
and is unbounded in the horizontal. High frequency inertial oscillations can exist 
when the rotation rate is sufficiently large. The numerical solution of this problem 
applies the DuFort-Frankel difference scheme to represent the viscous terms in the 
equations of motion. Due to the artificial second time derivative associated with this 
scheme (see [4] or [5]), amplifying solutions will develop if the time step At is not 
sufficiently small. 

In Section 3, a previous study [8] is discussed in which three-dimensional numerical 
calculations were performed to simulate BCnard convection in a rotating fluid. The 
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mathematical formulation of the rotating BCnard problem is given, and the primary 
numerical results and conclusions are summarized. For the case of highest rotation, 
an amplifying mode developed which was of the same form as analyzed in Section 2. 
When the time step dt was reduced, this mode was not observed and the numerical 
results were realistic. 

2. DUFORT-FRANKEL INSTABILITY FOR A ROTATING HOMOGENEOUS FLUID 

The general problem is first specified and the analytical solution given. The numeri- 
cal problem is then discussed. A homogeneous fluid is unbounded in the horizontal 
and confined between two planes, separated by the distance d, in the vertical. The 
fluid has a constant coefficient of kinematic viscosity V. The planes are assumed to 
rotate about the vertical axis with the rotation rate Q. The hydrodynamical equations 
of motion are specified in a coordinate system rotating with the two planes. The 
origin of the coordinates is located on the lower plane. 

2. I. The Analytical Solution 

Inertial solutions are considered for which the horizontal velocities are functions 
of the vertical coordinate z and the time t only. The horizontal pressure gradients 
are assumed to be zero everywhere. The vertical velocity w must vanish identically 
due to the constraint of continuity and the two rigid boundaries in the vertical. 
The nonlinear terms in the momentum equations also vanish identically. Cartesian 
coordinates (x, y, z) are defined with the corresponding velocities (u, U, w). The 
horizontal momentum equations for ZJ and z) are given by 

au/at = 29~ + v(a22+2), (14 
avlat = -2Qu + v(a2v/az2). (lb) 

The no-slip conditions u = v = 0 are required to be satisfied at the boundaries 
located at z = 0 and z = d. 

The above problem has a solution of the form 

u = u eat sin mz 0 7 (24 
v = v eat sin mz 0 3 (W 

where m = rrld and u0 , v, are constants determined by the initial conditions at t = 0. 
The time dependence can be obtained by substituting @a), (2b) into (la), (lb) and 
setting the determinant of the coefficients equal to zero. The resulting quadratic 
equation in a gives the solutions 

a = fi2Q - vm2. (3) 

Thus the imaginary part of these solutions indicates the presence of inertial oscillations 
with the frequency 28. However, for any homogeneous fluid with a nonzero viscosity 
V, these oscillations will be damped in time. 
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2.2. Formulation of the Numerical Problem 

The finite difference form of Eqs. (la) and (lb) must be specified for the numerical 
problem. The terms au/at, 252~ and v(L@u/az2) in (la) are represented by 

a24 1 
at” 2At 

- &;+I - $I), 

2Qv M 252v; ) WI 

a224 
v TQ m & M+1 - 24;” - 4-l + u,n_,}, (4c) 

where At is the time step, AZ is the vertical grid interval, and II, k are ingeters related 
to t and z such that t = n At and z = k AZ. A similar representation is used for the 
terms in (lb). 

Thus, the finite difference forms of au/at and a2u/L+z2 given in (4a) and (4c) are speci- 
fied according to the DuFort-Frankel scheme. Note that’the finite difference form of 
a2u/az2 can be rewritten as 

a224 
32 w (AZ)2 -..L {u;t,, + g-1 - 2u;t ) - p2 &F (24;” + 4-l - 2G 1 (5) 

where p = At/AZ. As discussed in [4, 51, the right-hand side of (5) is consistent with 
a2u/az2 if and only if p --+ 0 as At -+ 0. If /3 approaches a constant as At -+ 0, then 
the right-hand side of (5) is consistent with 

(a22d/az2) - pya2u/at2). 

Thus, for finite At and AZ, the second term on the right side of Eq. (5) represents an 
artificial finite difference second time derivative. It will be shown below that the 
existence of a finite /3 can lead to the existence of amplifying numerical solutions. 

The following analysis makes two basic assumptions. These are that the time step 
At N ~(Az)~/v and that the inertial oscillations are reasonably well resolved. Speci- 
fically it is assumed that 

2vAt 
Y = (42)2 = W), 252 At = l 1l2. 

Note that y can also be written as 2v/32/At. In order to have an idea of expected magni- 
tudes of y and E, the BCnard problem discussed in Section 3 is considered. In parti- 
cular, the case of highest rotation with the Taylor number T = 10,000 as shown in 
Table I is examined. It is found for this case that y = 0.87 and E = 0.029. 

The finite difference equations corresponding to (la), (lb) have solutions of the 
form 

u = u, exp(oNt) sin mz, (74 

v = u, exp(o,t) sin mz, G’b) 
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where again t = n L3t and z = k AZ. The complex numerical frequency is represented 
by UN. These solutions satisfy the no-slip boundary conditions u = L’ = 0 at z = 0 
and z = d. 

TABLE 1” 

Details of the Four Numerical Integrations [8] 

Run At tc N N, h A* 
-____ 

T=O 0.45 x 10-S 0.675 2.56 2.58 2.76 2.4 

T = 400 0.45 x 10-s 0.540 2.72 2.63 2.33 2.4 

T=2500 0.45 x 10-a 0.742 2.85 2.75 1.44 1.8-1.9 
T = 10,000 0.25 x 10-a 0.345 2.67 2.57 1.36 1.4-1.5 

LL The time step At and the total time of the run t, are scaled by de/K. The experimental values 
N, and & were obtained from Rossby [6]. 

2.3. The Existence of AmplifVing Solutions 

In Section 2.1 it was shown that the analytical solutions for the inertial oscillations 
are damped in time. For this reason, the primary concern of the present analysis is 
to determine whether neutral or amplifying numerical solutions exist for the finite 
difference equations. It will be shown that such solutions do exist under certain 
conditions. 

If we substitute (7a), (7b) into the finite difference counterparts of (la), (lb) and set 
the determinant of the coefficients equal to zero, we find 

S, + v(M2 + p2S2) = *2Qi 

where S, , S, and M2 are given by 

S, = & sinh(o, At), 

M2 = (&2 __ (1 - cos(m AZ)). 

The complex UN is defined by 

UN - UNT + 1uNi * 

Using this definition, (8) can be separated into its real and imaginary parts 

Cos(UNi d t){Sinh(UN, d t) + y COSh(UN, d t)} = y - d t vM2, 

sin(UNi d t)(COSh(uN, d t) + y Sinh(UN, d t)} = 1252 d t. 

Q-9 

(94 

(9b) 

(9c) 

(10) 

(1 14 

(11’4 
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The imaginary component (TNi of (TN can be eliminated from (1 la), (1 lb) through use 
of the equation 

cos2(uNi At) + sin2(uNi dt) = 1. 

After some algebra, the following equation is obtained 

-VA42 l- ( @“< ii42 ) + 4522jPvh(u,, At) 

=2k I( 
$ sinh(u,, dt) + cosh(a,, At))’ 

where 

h(UNT dt) = (1 + WY) taWuN, W2 
(1 + y tanh(u,, At))2 ’ 

(12) 

-1 
I (13) 

(14) 

The function h(aN, dt) is either monotonic increasing or decreasing, with h(0) = 1 
and h(a) = (1 + l/r)“/(l + r)“. 

The left side of (13) is denoted by the function f(u& and the right side by g(u&. 
A solution exists wheneverf = g. If uNr = 0, then g = 0 and h = 1 so that a solution 
exists when f = 0, or 

--Ma (1 - q 4 + &F/j2 = 0. 

This is the condition for neutral disturbances to exist. 
The functionsfand g are drawn schematically for positive (TN,. in Fig. 1. The function 

g(uN,.) monotonically increases from %ro to ittfmity as UN? increases from zero to 
infinity. The function f(uNr) remains finite for all positive UN,. . In Fig. 1 f(0) > 0 
is assumed. This figure clearly shows that a positive growth rate (TN,. = a, exists when 
f(O) > 0. 

FIG. 1. The plot of fand g (from Eq. (13)) as functions of positive 0~~. See text for discussion. 
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The remaining question is whether amplifying solutions can exist if f(0) < 0. 
To answer this question, the derivatives of g andf with respect to U,&&. are calculated 
for ON,. > 0 

&/da,, = cosh’(a,, At)@ + (1 /r) tanh(o,, d t))( 1 + y tanh(a,, B t)), (16) 

df/&,, = E(l _ pj (1 + (l/Y) bnh(u, At))(l - tanh2(u,, At)) . 
(1 + y tanh(a,, dt))s (17) 

A comparison of (16) and (17) shows that dfldcr,, -c dg/duNT for UN+- > 0 if 
~(1 - y2) < 1. But E is a small quantity and y = O(1) so that the condition 
~(1 - r”) -==z 1 will be met. Thus if f(0) -=c 0, there is no possibility that the f((T& 
curve can cross the g(oN,.) curve for u NT > 0. Hence amplified solutions exist if and only 
iff(0) > 0. These solutions can be eliminated by requiring dt to be sufficiently small 
so that f(0) < 0. The condition 

At < A4 (1 - 9 M*)1/2 (44252) 

will insure that damped solutions will only exist. 
It is of interest to simplify expression (18). From definition (SC) of M2 and the defi- 

nition m = r/d, it can be shown that to order (Az/~)~ 

M (1 - ky M2)li2 -m(l -$(-$-r). 

Thus for good resolution in the vertical (ten grid points or more) 

&f (1 - i!y Mpy2 E m 

(19) 

(20) 

and (18) is simplified to 
At < (m/252) AZ. (21) 

Now define the wavelength X = 2rr/m and the inertial period r = V/G? Then (21) 
becomes 

At/r < AZ/X. (22) 

For stable solutions to exist, the above equation indicates that the number of time 
steps At required to resolve the period 7 is equal or greater than the number of grid 
intervals used to resolve the wavelength h. Thus, the existence of amplifying solutions 
does not necessarily indicate that the numerical resolution of 7 is poor. It rather 
indicates that the resolution of T is not as good as that of h. 

In conclusion, we note that amplifying modes can occur for high frequency inertial 
waves even if j3 is relatively small. Although no proof is given, this investigator 
is of the opinion that amplifying modes are also possible when other types of high 
frequency oscillations are present. 
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3. NUMERICAL SIMULATION OF B~NARD CONVECTION IN A ROTATING FLUID 

The present investigator has encountered numerical difficulties with the DuFort- 
Frankel scheme for two separate studies. The first was a joint effort by Somerville 
and Lipps [8] to numerically simulate Benard convection in a rotating fluid. This 
study and the numerical difficulties associated with it will be discussed in Sections 3.1 
and 3.2. In the second study [2], calculations were carried out to simulate BCnard 
convection in air. The accuracy of the DuFort-Frankel scheme for those calculations 
is discussed in detail in Appendix B of that study. 

3.1. Formulation of the Problem and the Numerical Model 

The present BCnard convection problem involves a horizontally unbounded fluid 
confined between two rigid horizontal plates. These are maintained at different 
constant temperatures, the lower one being the warmer. The plates are also subject 
to a uniform rotation rate about a vertical axis. The specification of the problem is 
conventional [l] and involves eight constants. These are the depth of the fluid layer d, 
the acceleration of gravity g, the temperature difference d 0 across the layer, the angular 
rate of rotation Q, the mean density p,, , and the coefficients QI, K, and v of thermal 
expansion, thermometric conductivity, and kinematic viscosity. 

Three independent dimensionless parameters which are important in the present 
problem are the Rayleigh number R, the Taylor number T, and the Prandtl number P: 

R = gal A0 d3/w, T = 4@d41v2, P = V/K. 

The equations and boundary conditions are given in dimensionless form with the 
Cartesian coordinates (x, y, z) scaled by d, the time t scaled by d2/fc, the vector velocity 
V scaled by K/d, the temperature 13 scaled by AB, and the pressurep scaled by poK/d. The 
The equations for conservation of mass, momentum, and thermodynamic energy 
then become 

v-w =Q, (23) 
(awlat) + w a vw + PTi12D6Xw + vp - PV2V - PRO!6 = 0, (241 

p/at) + w . ve - v2e = 0. 

Here K is a unit vector, parallel to the vertical coordinate z and to the rotation axis and 
opposite in direction to gravity. The above equations are expressed in a coordinate 
system rotating with the boundaries. Taking the origin on the lower boundary, the 
conducting, no-slip boundary conditions are given by 

e=*,w=Oatz=O; e=-+,w=Oatz=l. 

The numerical calculations are carried out in a finite volume specified by 
0 < x 9 L , 0 < Y < L, , and 0 f z < 1. At the lateral side boundaries cyclic 
continuity is required at x = 0 and x = L, and at y = 0 and y = L, . The values 
L, = 6.0, L, = 4.9 and the grid intervals Ax = Ay = 0.1364, AZ = 0.0625 were 
used in [8]. The values used for the time step At will be discussed below. 
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The numerical procedure for the time integration of Eqs. (24) and (25) follows that 
described by Williams [9] and is discussed in detail in [2]. Of the most significance 
here is that the viscous and diffusive terms are evaluated using the DuFort-Frankel 
finite difference scheme. Since the Laplacian operators in (24) and (25) are three- 
dimensional, the form of j3 will be modified from that given in Section 2.2. The 
present form of p is denoted by p1 and is defined as 

p1 = g [I + gja + ($,‘1”‘. (26) 

Using /il the stability condition is somewhat more stringent than indicated by Eqs. (18) 
and (22). For example, Eq. (18) becomes 

At < jj,fl (1 - 9 Mf)l” (1 + (2,” + (+)lj+ T--P-l dz (27) 

where Ml = Md for the present scaling. 

3.2. Numerical Results and Primary Conchsions 

The motivation for the calculations in [8] was to examine the nonmonotonic 
dependence of the heat transport on T as found experimentally by Rossby [6]. His 
result was not expected, since linear stability theory (1) suggests that rotation should 
decrease the intensity of the convection. Thus, the heat transport was expected to 
monotonically decrease with increasing rotation. 

The four numerical runs carried out in [8] are summarized in Table 1. These cal- 
culations were performed for R = 15,000 and P = 6.8 (water). In this table At 
is the time step and t, is the total time of each run. The heat transport is expressed in 
terms of the Nusselt number N. This quantity can be defined in terms of the volume 
average 

N = L,L, 0 0 
~~~‘snL”(wS-Ejdxdydr. (28) 

When no motion exists, the boundary conditions at z = 0 and z = 1 require N = 1. 
For finite amplitude BCnard convection N > 1. 

The remaining parameter shown in Table I is the horizontal wavelength X of the 
flow patterns. The experimental wavelengths A, were obtained as mean values from 
photographs taken by Rossby [6]. The numerical values of h were obtained as mean 
values from the horizontal variation of w at the z = 0.5 level. 

Numerical and experimental values of N are shown in columns four and five 
of Table 1. These data indicate that the numerical calculations reproduce the observed 
nonmonotonic dependence of N with T. The reason for this behavior of N appears 
to be related to the decrease in h as T is increased. This variation of h with T is seen 
in the final two columns of Table I. Two-dimensional calculations by Lipps and 
Somerville [3] show that for T = 0 and R and P held fixed, a decrease in h is associated 
with an increase in N. Thus, at small T, it appears that the increase in N is associated 
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with the decrease in h. For larger values of T, the stabilizing effect of rotation becomes 
dominant so that N decreases with increasing T. This explanation of the observed 
variation of N with T was first suggested by Somerville [7]. A more detailed discussion 
of this conclusion and of the numerical results is given in [8]. 

As seen in Table I, the time step dt = 0.45 x 1O-8 was used for all but the largest 
value of T. When calculations at T = 10,000 were attempted using this value of dt, 
an amplifying mode similar to those discussed earlier developed. Calculations were 
then performed at T = 10,000 using dt = 0.25 x 10-3. These calculations were 
well behaved with no observation of amplifying solutions. It should be noted that 
condition (27) requires the time step dt < 0.2407 x 10-3. Thus, the value of dt 
used was slightly larger than given by (27). 

The calculations at T = 10,000 remained stable either because the numerical 
scheme had stabilizing factors not included in the present analysis or because the 
amplifying solutions did not have time to develop. The latter explanation is likely 
because dt is very near the critical value given by (27). Calculating f(0) and using 
dg/du,, 1” = 1 obtained from (16) (SNr can be approximately calculated and the ampli- 
fication factor exp(crN,.tc) can be evaluated for unstable numerical disturbances 
growing during the total time t, of the run. With t, = 0.345, the amplification factor 
is calculated to be 6.0. This small value can easily explain why such disturbances 
had no importance in the calculations. 
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